Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser
نویسندگان
چکیده
Coherence of supercontinuum sources is critical for applications involving characterization of ultrafast or rarely occurring phenomena. With the demonstrated spectral coverage of supercontinuum extending from near-infrared to over 10 μm in a single nonlinear fiber, there has been a clear push for the bandwidth rather than for attempting to optimize the dynamic properties of the generated spectrum. In this work we provide an experimental assessment of the shot-to-shot noise performance of supercontinuum generation in two types of soft glass photonic crystal fibers. Phase coherence and intensity fluctuations are compared for the cases of an anomalous dispersion-pumped fiber and an all-normal dispersion fiber. With the use of the dispersive Fourier transformation method, we demonstrate that a factor of 100 improvement in signal-to-noise ratio is achieved in the normal-dispersion over anomalous dispersion-pumped fiber for 390 fs long pump pulses. A double-clad design of the photonic lattice of the fiber is further postulated to enable a pump-related seeding mechanism of normal-dispersion supercontinuum broadening under sub-picosecond pumping, which is otherwise known for similar noise characteristics as modulation instability driven, soliton-based spectra.
منابع مشابه
Generation of high-quality sub-picosecond optical pulses using a combination of normal and anomalous dispersion fibers
A practical method for generating high-quality optical pulses of sub-picosecond pulse widths is presented. The method uses linear chirp generation in supercontinuum pulses in a normal dispersion fiber. This linear chirp is utilized by an anomalous dispersion fiber to shorten the pulse widths down to a few hundreds of femtoseconds. This compression method results in 0.28-ps 10-GHz optical pulses...
متن کاملLimits of coherent supercontinuum generation in normal dispersion fibers
We study the largely unexplored transition between coherent and noise-seeded incoherent continuum generation in all-normal dispersion (ANDi) fibers and show that highly coherent supercontinua with spectral bandwidths of one octave can be generated with long pump pulses of up to 1.5 ps duration, corresponding to soliton orders of up to N 600. In terms of N , this corresponds to an approximately ...
متن کاملUltra-Broadband Fiber-Based Optical Supercontinuum Source
Entitled: " Ultra-Broadband Fiber-Based Optical Supercontinuum Source " and submitted in partial fulfillment of the requirements for the degree of Master of Applied Science Complies with the regulations of this University and meets the accepted standards with respect to originality and quality. The supercontinuum (SC) generation has been studied intensively because of its numerous applications,...
متن کاملMIR supercontinuum in all-normal dispersion Chalcogenide photonic crystal fibers pumped with 2μm femtosecond laser
We demonstrate mid-infrared supercontinuum generation in an all-normal dispersion Chalcogenide PCF pumped by fiber laser. The -20dB bandwidth is 1.7~2.7μm dominated by selfphase modulation and optical wave breaking. Tapering is proposed to improve performance. OCIS codes: (320.6629) Supercontinuum generation (190.4370) Nonlinear optics, fibers (060.5295) Photonic crystal fibers
متن کاملSquare Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm
In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric split-step Fourier (SSF) and fourth order Runge Kutta (RK4) which is an accurate method to solve the general nonlinear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016